Logo Generation of hkl and 2q

Output from Program DRAGON-WWW


F-CENTRED Orthorhombic Unit Cell

Cell parameters
a (Å) b (Å) c (Å) a (°) b (°) g (°) V3)
6.00000 7.50000 8.50000 90.000 90.000 90.000 382.5

Wavelength = 1.54056 Å     2q Maximum = 120.000°     Zero Error = 0.000°     Minimum d-spacing = 0.88944 Å

Space group is Fmmm     Lattice = F     1st  symbol = m     2nd  symbol = m     3rd  symbol = m     Crystal class is m m m

Reflection conditions are     hkl: k + l = 2n     hkl: h + l = 2n   

Number of generated reflections is 95     Number output to browser is 95

hk lJ d (Å) 2q (°) hk lJ d (Å) 2q (°) hk lJ d (Å) 2q (°)
0 0 2 2 4.2500 20.884 4 2 2 8 1.3235 71.185 2 6 4 8 1.0140 98.865
1 1 1 8 4.1032 21.640 1 5 3 8 1.2945 73.034 5 3 3 8 1.0107 99.309
0 2 0 2 3.7500 23.707 2 0 6 4 1.2810 73.926 2 0 8 4 1.0015 100.545
2 0 0 2 3.0000 29.756 3 1 5 8 1.2764 74.239 6 0 0 2 1.0000 100.758
0 2 2 4 2.8119 31.797 2 4 4 8 1.2731 74.465 4 2 6 8 0.9932 101.716
2 0 2 4 2.4509 36.635 0 6 0 2 1.2500 76.082 1 7 3 8 0.9885 102.386
1 1 3 8 2.4245 37.049 4 0 4 4 1.2255 77.889 3 5 5 8 0.9804 103.573
2 2 0 4 2.3426 38.394 2 2 6 8 1.2122 78.902 6 0 2 4 0.9734 104.617
1 3 1 8 2.2271 40.470 0 6 2 4 1.1992 79.931 5 1 5 8 0.9721 104.820
0 0 4 2 2.1250 42.506 3 5 1 8 1.1882 80.822 2 2 8 8 0.9676 105.509
2 2 2 8 2.0516 44.105 1 1 7 8 1.1754 81.886 6 2 0 4 0.9662 105.727
3 1 1 8 1.8844 48.255 5 1 1 8 1.1736 82.044 4 6 0 4 0.9603 106.671
0 4 0 2 1.8750 48.512 4 4 0 4 1.1713 82.238 3 3 7 8 0.9586 106.937
0 2 4 4 1.8488 49.245 4 2 4 8 1.1648 82.795 6 2 2 8 0.9422 109.679
1 3 3 8 1.7893 50.998 2 6 0 4 1.1538 83.761 3 7 1 8 0.9387 110.292
2 0 4 4 1.7341 52.745 3 3 5 8 1.1501 84.096 0 8 0 2 0.9375 110.497
0 4 2 4 1.7155 53.362 0 4 6 4 1.1303 85.918 0 6 6 4 0.9373 110.533
1 1 5 8 1.5981 57.634 4 4 2 8 1.1292 86.023 4 6 2 8 0.9367 110.644
3 1 3 8 1.5965 57.696 2 6 2 8 1.1135 87.536 1 5 7 8 0.9323 111.418
2 4 0 4 1.5900 57.953 1 5 5 8 1.1055 88.337 5 5 1 8 0.9314 111.586
2 2 4 8 1.5739 58.602 3 5 3 8 1.1050 88.389 1 1 9 8 0.9258 112.609
3 3 1 8 1.5360 60.195 5 1 3 8 1.0932 89.598 0 4 8 4 0.9244 112.874
4 0 0 2 1.5000 61.797 0 6 4 4 1.0774 91.275 0 8 2 4 0.9155 114.573
2 4 2 8 1.4892 62.296 1 3 7 8 1.0746 91.583 5 3 5 8 0.9127 115.122
1 5 1 8 1.4343 64.963 5 3 1 8 1.0732 91.740 6 0 4 4 0.9048 116.709
0 0 6 2 1.4167 65.875 0 0 8 2 1.0625 92.933 4 4 6 8 0.9027 117.144
4 0 2 4 1.4145 65.990 2 4 6 8 1.0577 93.478 1 7 5 8 0.8963 118.508
0 4 4 4 1.4059 66.442 1 7 1 8 1.0467 94.767 3 7 3 8 0.8960 118.568
4 2 0 4 1.3927 67.157 4 0 6 4 1.0299 96.816 2 8 0 4 0.8948 118.817
1 3 5 8 1.3687 68.496 3 1 7 8 1.0282 97.040 2 6 6 8 0.8946 118.855
3 3 3 8 1.3677 68.552 4 4 4 8 1.0258 97.339 5 5 3 8 0.8897 119.953
0 2 6 4 1.3253 71.075 0 2 8 4 1.0223 97.790


Back (or use back button on browser to keep contents of form intact)
© Copyright 1998-2006.  Birkbeck College, University of London. Author(s): Jeremy Karl Cockcroft